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Abstract--The phenomena of solid particles suspensions, in a turbulent flow, can more conveniently be 
described by stochastic models than by diffusion models, particularly in the case of relatively coarse 
particles. 

The fundamental difficulties of using such models are principally due to the difficulty of performing 
direct measurements of probabilities, because the number of observations (or tests) necessary to obtain 
physically representative values is important (theoretically infinite). 

We have used such a model to describe the movement of spheres in an inclinable pipe. 
To do so, we have identified the movement through a Markov process which permits us to show that we 

can characterize it by the limit distribution for passage probabilities in a cross section. We have used a 
special system of close-circuit television to measure it, doing a sufficiently large number of observations for 
the measurements to be significant. 

In the case of a vertical pipe, the phenomena is one-dimensional. By using the model stochastic 
displacement, we obtain a differential equation which it is possible to integrate by assuming an obviously 
constant radial dispersion. The interpretation of limit distributions for passage probabilities and visual 
observations of particles movement in the pipe have caused us to conclude that the mean displacment is 
due, on one hand, to a radial acceleration bounded to a stochastic rotation of the flow and, on the other 
hand, to the effect of the mean velocity gradient. The experimental results show that the radial dispersion is 
a function of the relative dimension of particles with respect to the macroscale of the turbulence. 

In the case of an inclined pipe, a two-dimensional stochastic model of the displacement is possible, but 
the integration of the equation is quite complicated and may be done numerically. We have prefered a 
two-dimensional simulation model. The results of the simulations permit us to obtain a limit repartition of 
passage probabilities, the moments of which we have compared with those that we have measured. These 
comparisons show that the model obviously represents the phenomena when the pipe is horizontal or very 
slightly inclined but differs in the near vertical case. This is due to the simplicity of the model in which we 
neglect the radial acceleration we have considered previously and the effect of which is negligible in 
comparison with gravity when the pipe is inclined. 

The interpretation of the measurements by comparison of moments with the two-dimensional model 
shows that the angular dispersion of solid particles is essentially due to big eddies and that the particle 
diameters are not essential parameters in this case. 

By associating this conclusion with that obtained previously concerning the radial dispersion, it seems 
that the eddies bigger than the macroscale of turbulence may be of capital importance in the dispersion of 
solid particles and that it will be of practical interest to characterize them as a function of a mean parameter 
of the flow. 

The study of the movement of sufficiently large particles seems to be a method which is able to give this 
result. 

1. DETERMINISTIC MODELS AND STOCHASTIC MODELS 
To describe accurately the phenomena of solid particles suspension in a turbulent flow, it is 
necessary to do a local and instantaneous description of the flow, and of the solid particles 
which can be of different shapes and dimensions. A detailed analysis shows that one of the 
principal suspension parameters is the turbulent agitation which is characterized by a large 
number of stochastic parameters. In these conditions, we can try to find a relation between the 
mean statistical values of parameters, in two different ways: 

- -We suppose that each parameter is determined by a mean statistical value and we 
establish a model joining these different values; we have used a deterministic model. 

- -We establish a model joining the local and instantaneous values of each parameter 
considered as stochastic variables and we take the statistical mean of the obtained relation: we 
have used a stochastic model. 

Let us consider particles in suspension in a turbulent flow. If we suppose that the statistical 
mean of the solid particle concentration ~, is a passive scalar, we can describe the suspension 
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evolution by the classical diffusion equation (Hinze 1959; Fortier 1%7). 

ae + ai{ O i .  e} = 

whereOi is the operator O/OM; (Js ~ is the statistical mean instantaneous velocity of solid 
particles; and (es)/is the diffusion tensor of solid particles. 

The direct measurement of the different tensor is impossible to do; we can obtain it by 
adjusting experimental results on the next equation. We have tried to obtain a description of 

solid particle movement by direct measurement of the characteristic parameter of their 
stochastic displacements. 

2.1 

2. STOCHASTIC DISPLACEMENT OF A PARTICLE IN A PIPE 

Identification to a Markov process 

/////////////////~d////////~///////// 

/ / / / / / / / /  / / i ' / /  / / ~ ' / / / / / / / / ~ / / / / / / / / /  
Is, I s , 

Let z be the longitudinal axis of the pipe. We define, in each cross section s, elementary 
areas (As)i. Between two cross sections s and s2 we can define the probability Pii that a particle 

will pass through (As2)j of s2, if it has passed through (Asl)i of sl. The elements Pit define a 

passage matrice P of a Markov process if they only depend on the relative position of (As2)j 
and (As0~, and not on the past history of the particle. Such an hypothesis is physically 
acceptable if we choose the sections s2 and s~ far enough apart so that the turbulent interactions 

of flow on the solid particles between s~ and s2 are stochastically independant of those on 
particles before section s~. 

In these conditions, the stochastic vector X, which defines the particle position in a cross 
section s, follows a Markov process. It is physically clear that this process is: 

--Homogeneous, if we consider a steady flow and if the pipe characteristics are independant 

of z. 
--Irreducible, since the variable X can take all possible values. 

Since the passage probability distribution, characterised by the vector p, tends to a limit rr 
when z--->~, we say that the equilibrium distribution is reached (Cox & Miller 1970). 7r can be 

characteristic of the Markov process. 

2.2 Monodimensionnal displacement model 

X,T I ! 
/ , , / b / / / / , , v / / k / / / / / / / / / / , ' / / / / / /  

Let us consider a particle located at the transversal position x in the section z = Zo, and let 
a(x) be the probability for this particle to be in the section z0 + ~z in the position (x + ~x), and 
/3(x) be the probability for it to be in the section zo + Az, in the position ( x -  Ax). 
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If we indicate by p(x, z)Ax, the probability that a particle is located between x and x + Ax, 

we have: 

p(x, z) = a(x - Ax)p(x - Ax, z - Az) + [1 - a(x) - ~(x)]p(x, z - Az) 

+ ~(x + Ax)p(x + Ax, z - Az). 

If we suppose that the functions p(x, z), a(x),/3(x) are developable, in series, we obtain: 

O__p_p= {p(x,z)[d~(x) da(x) ]+ c~p } Ax lOP [-da(x)+ dfl(x) 
Oz L dx -dx J -~ [ f l ( x ) -a ( x ) ] j -~+t~x  t--~x - - f lU]  

+2-~x2[a(x)+¢(x)]2 p(x'z) [ dx 2 + Az" 

Noting that {a (x) -~(x)}Ax is the mean displacement between the two sections distant of 
Az, and - { [ a ( x ) +  el(x)]-  [ a ( x ) -  ¢i(x)]2}Ax 2 is the variance of this displacement, and letting 

~(x) = lim { a ( x ) - f l ( x ) } ~  
Ax. Az~'O 

/~(x)] - [atx) - /3  (x)] 2} Or(X) lim {[,,~x) + 
Ax, Az-,O / & Z  

we can obtain the following equation: 

Oz = ~ p(x, z) . Or(x) - ~  {ptx, z) . ~(x)}. 

If f(x) is the limit of p(x, z) when z ~ ,  we obtain: 

l d  
f(x)./x(x) = ~ ~-~ {f(x) • or(x)} + a .  

The constant A can be determined by the limit conditions, by writing that the probability of 
a particle being in the position x > 1 or x < 0 is O; we show that, in this case, A = O. 

The equilibrium distribution is given by the differential equation: 

f(x)" g(x)= ~ d {f(x)Or(x)}. [1] 

2.3 Two-dimensionnal displacement model 
If we consider that the stochastic variable X defining the particle position in a cross section is a 

two-dimensional vector and if we let Xi be its components then, in the same way, we can define: 
M the vector of components, M,. as the mean displacement between two sections z and 
z + Az such that: 

1 
M/(x) = lim E { [ X i ( z  + AZ) + X i ( z ) ] l X ( z )  = X} " 

A z-,O 

where E{a} is the mean of a, and X, the tensor of components aij, such that: 

1 
Oro(x) = Az" lim C{[Xi(z + A z ) -  X~(z)], [Xi(z + Az ) -  Xi(z)]/X(z) = x} 

Az--*O 
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where C{a, b} is the covariance of a and b. 
We obtain an equation similar to [1]: 

l _ - -  c~iOi{triJ(x) • p(x, z)}- ~{Mi(x) • p(x, z)} - c~p 
32" 

The equilibrium distribution [(x) which is, in polar coordinates, a function of r and 0, is a 
solution of: 

3. M E A S U R E M E N T S  OF PASSAGE PROBABILITIES  REPARTITION 

IN A CROSS SECTION 

3.1 Description oj: the detection system 
An estimation of the passage probabilities distribution can be obtained: 
--By dividing each cross section in elements (As)i, located by the vector x~. 
--By releasing N times, one particle into the flow and counting the number of times ni that a 

particle passes through (As)i. 
So, we obtain: 

f(xi) = ni/N 
(as)/" 

Theoretically, we should have N-o~  and (As)i--*0. Practically, in order to have an 
acceptable precision, using the Moivre-Laplace law, we can show that it is necessary to have 
N -  1000. 

It is necessary to use a suitable detection system. The principle of the system used is the 
following (figure 1): 

"We light the cross section s, maintaining the test of pipe in darkness. A particle moving 
in the flow is only visible when it passes through s. The picture of this passage is formed on a 
television camera, by a periscopic system. The analysis of this picture is realised by a special 
apparatus (Moya Anica 1972; Alquier 1975; Alquier & Gruat 1978) which permits the particle 
passage to be obtained immediately. The measured values are registered on a writing recorder 
and analysed after each experiment". 

I I 1 1 1 1 1 1 1 / / / / / /  , / / ~ , / / / 1 1 1 1 / 1 1 1 1 1 1 / / / /  

Flow maintained Meosuring 
in darkness 4P~sec t ion  

I l ~ / I / / l l l / l  1 / 1 1 / / 1 1 '  ' I / / I / / / / I  / I  
,..r,.,..o,,,o  ll. ;,>,,,',,..<,'..n / _ _  .,,.'.,., [ , ,  

LightinqJ / system I 

T.V. Camera _ _ ~ - 4 , -  

Figure I. System of detection. 



iNFLUENCE OF LARGE EDDIES ON THE SUSPENSION OF SOLID PARTICLES 

Table 1. Characteristics of solid spheres 

431 

diameter 
5 4 3 2 3 

in rmn. 

density 1375 1313 1437 1593 804 
in kg/m3 

fall velocity 
in cm/s 20,7 18,3 15,1 .. 11,2 - 10,9 

0 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  

Figure 2. System of particles injection. 

3.2 Experimental conditions 
The experimental installation is an inclinable pipe 4.50 m long and 80 mm diameter, with a 

grid in the entry in order to obtain a fully developed flow as quickly as possible. 
For each test, we inject approx. 1000 spherical particles, one by one, the characteristic of 

which are given by table 1. The injection system is given on figure 2. Experiments have been 
done with different injection points and it has been verified that the results are not influenced by 
the position of injection point. 

We have done tests for differents discharges and different values of the angle of slope a 
with respect to the horizontal (see table 2). 

3.3 Experimental observations 

By looking at the particle displacements, we can see that they have small stochastic 
movements in the radial and angular directions which show the effects of turbulence, and larger 
scale movements (of the same order of magnitude as the pipe radius) consisting, with small 
velocities of alternate, and apparently stochastic, rotations round the axis of the pipe. These 
movements correspond to a stochastic twisting flow which can be simulated by an eddy 
structure with a scale of same order of magnitude as the pipe radius. 

In these conditions, it appears that the radial dispersion is essentially due to the fine 
structures and must be a function of the particle dimension, since the angular dispersion is 
essentially due to the big structures and depends little on particle size. 

4. R A D I A L  D I S P E R S I O N  S T U D Y  

In the case of a vertical pipe, there is an axial symmetry so that the passage probability 
depends only on the distance to the pipe axis and can be characterised by the repartition 
function Q(r), where r is a non-dimensional variable varying between 0 and 1: 

R 
r = ( D -  d)/2 
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7.1 

5 .7  

4 . 6  

q.1 

2 .7  

2 

1 .5  

90 82.5 75 

Table 2. 

60 30 

x x 

x x 

V 
me an 

into / s 

V D 
m 

Re = 
M 

1 . 4 4  1 . 1 4  x 105 

1 .16  9 . 1 9  x 104 

0 , 9 3 8  7.41 x l0 t+ 

0 . 6 3 2  5 x l0 t+ 

0 .551 4 . 3 5  x 104 

0 .4 0 8  3.22 x 104 

0 . 3 0 6  2 . 4 2  x 10 t~ 

where R is the radial coordinate; D is the pipe diameter; and d is the sphere diameter. 
Q(r)  is the probability that the passage radius of a particle is bigger than r. We can use the 

unidimensional model, the equilibrium distribution of which is given by [1]. 

~r(r) which is due to turbulent radial fluctuations can, to a first approximation, be taken to be 
a constant; /z(r)  is due (i) to the big eddies which induce a rotation round the axis of the pipe 

and so a radial acceleration field, and (ii) to the effect of wall which is perceptible since the 
particle is sufficiently near the wall, i.e. since r > r e. 

So, we have put 

21z(r)/tr(r)= ko+ k l ( r -  rp) if r > rp [3] 
2l~(r)/tr(r) = ko if r < r e 

where k0, kl, r e are constants. The equation [1] gives: 
d/ 

f ( r )  " {2tz (r)/tr(r)} = dr  

where 

and 

with 

I 
f ( r )  : fo ekOr+(l/2)kl(r-rp)2 if r >  rp 

f ( r )  f oe  k°r if r < r p  

1 fm ~ r' e k°~'+~j(~'-~p)2 dr '  if r Q(r) = rp 

1 frpr,  O(r)  = -~ e k°r' dr'  if r < rp 

fo f' A = r' e k°r' dr' + r' {e k°r'+tll2)kltr'-rp)2} dr'. 
W rp 

By using the mean square criterion, we have determined the k0, kl, rp values, corresponding 
to each test. The results for k0 are given on the figure 3 for different particles and different 
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Figure 3. Radial dispersion study-coefficient Ko of [3]. 

discharges. We can notice that for the lighter than water particle, ko is negative, which 
corresponds to a centripetal acceleration, and ko->0 when discharge increases, i.e. when 
become sufficiently large. 

The mean radial displacement #(r) varies as the relative value of transverse velocity due to 
radial acceleration on the mean longitudinal velocity. Dimensional analysis shows that (Alquier 
1977): 

2 
Ps--P d r. 

P ~ Ke 

so that 

- P  d2 R e ) ] ~  lhr (Komasaka et al. 1974). 

The macrosccale of turbulence A varies to a first approximation as ReD so that the 
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Figure 4. Radial dispersion study--variation of variance of displacement with flow conditions. 

parameter ReD/d characterizes the dependence between A and d. Figure 4 shows that the radial 

dispersion, principally due to turbulent fluctuations is in our experiments a function of Aid. 

5. A N G U L A R  D I S P E R S I O N  S T U D Y  

In the case of an inclined pipe, the mean displacement due to the action of gravity is such 
that we have: 

M r = ~ cos 0 
M ° = # sin 0 

by choosing the origin at 0 = 0 
following the direction (ps - p)~ 

V~h cos a V~h sin a 
/z - V,, - Vch sin a [4] 

where V~h is the fall velocity of particles and V,, is the mean velocity of the flow. Using the 
hypothesis: (i) ~r '~ = cr °r = 0; (ii) a "  = a ~  = or. 

We obtain the equation: 

~cr{Or,[r.f(r, 0 ) ] - ( 0 , ~ - ~  0o)f(r ,  O)}-/z{Or[rcos Of(r, 0)] +/~3o[sin Of(r, 0)]} =0.  

This equation is hardly analytically integrable, we have preferred to use a numerical 
simulation of the particle displacement in the pipe. 

5.1 Numerical simulation 
This follows nearly the definition of a stochastic process: 

We divide the section s into n 2 elements and in each we put initially a constant number of 
particle. For each particle, we pull out 2 random numbers, BR and BO, taking place in 2 
independent series of random numbers, the mean of which corresponds to the mean radial and 
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mean angular displacement. The particle which was in position X0(r0, 0o) is now in position 
xl(rl, 00 so that: 

rl = ro + B R  

Oi = Oo + BOIro " 

When we have displaced every particle, we obtain a new repartition. We repeat the process 
until we obtain a stable distribution corresponding to the equilibrium distribution of the process. 

5.2 O b t a i n e d  resu l t s  

Associating the results obtained by numerical simulation and the experimental results by 
identification of second order moments of the angular marginal distribution, which charac- 
terizes the angular dispersion, we obtain value of (/z/(r) for each experiment. 

Taking into account [4], (/z/~r). [(Vm -- Vcs sin a) /Vch]  must vary linearly with cos a for a 
given sphere and a given discharge, which is approximately verified. The slope of the straight 
line obtained is proportional to (l/a). As we can see on figure 5, there is no systematic 
classification of (]/~) as a function of diameter, so, the solid particles can be a good tracer for 
the study of the bid eddies. 

6. CONCLUSIONS 

The results we have obtained show that the solid particle dispersion is due to two 
phenomena: 

--A dispersion due to turbulent velocity fluctuations which, in our experiments, where the 
particles are of the same order of magnitude as the macroscale of turbulence, is a function of 
particle dimension. 

A dispersion due to eddies of same order of magnitude as the pipe radius, which is not a 
function of particles dimension. 

This latter is certainly influenced by limit conditions of the flow. 
It is difficult to characterize in the actual state of our experiments where we have only 

measured the equilibrium distributions of passage probabilities; however, it seems important to 
note that it is the essential basis of the dispersion in our experimental condition and it is not 

"/'.~I ~ vm°y-  VchSinO~ 
v v ~in ~ 7='/ . . . .  | (~  ). m ~ , -  ch ~( . I Vch • . ~  

/ • ~0 = 5 r n m  ~ =137S Sl / I .  / / _ _ _ .  
/ / /  1 1 " ~ =  3,, e = a04 ,, / / / : /  • ,~ = 4  ,, . e =~ ;313  ,, ~ d . / /  I [  " ~ 

0 • o ,  o ' o ,o,~---~ O, , 

CK : 3 0 o4:30 ° o ~ - - o 2 , s ' ~ : T s  ~ = ~ o  o I .c~--75 ° o~--'Go ~ 
o(=02,5 

Figure 5. 
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bad. We have actually done a new series of experiments which can permit us to directly 
measure the parameter or by measuring the different terms of passage matrix. These tests are 
complex because the large number of terms (if n terms are sufficient to measure 7r, we have n 2 
terms to characterize P, and necessitates a modification of the registry system of passage 
coordinates of a particle. 
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